
STREAM PROCESSING

Allen Goldberg*
University of California, Santa Cruz

and
Kestrel Institute, Palo Alto, CA

Robert Paige**
Rutgers University

New Brunswick, NJ

Abstract

Stream processing is a basic method of code optimization

related to loop fusion that can improve the space and speed

of iterative applicative expressions by a process of loop

combination. It has been studied before in applications to

program improvement and batch oriented database

restructuring. Previous attempts al implementation have been

either highly restrictive, have required manual intervention, or

have involved naive strategies resulting in impractically slow

running times.

This paper defines a new model for a stream processing

problem for handling a wide class of applicative expressions

that can be evaluated by looping in an unordered way through

a single set or tuple valued argument. This problem is

formulated graph theoretically and shown to be NP-Hard,

even in the presence of constraints. Two new efficient

heuristic algorithms will be presented. The efficiency of these

solutions allows stream processing to be applied dynamically as

a database query optimization, and as an important component

of a high level language optimizer.

Our method of stream processing has been implemented and

used effectively within the RAPTS transformational

programming system.

1.Introduct ion

Translation of relational database queries into efficient

executable code is an interesting and challenging problem

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title o f the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACMO-89791-142-3/84/O08/O053 $00 .75

facing database, data structure, and program language

researchers. The optimization techniques stressed in the

database literature mainly involve algebraic manipulations that

change the order of evaluation of subqueries so that selections

and projections are performed before join and cartesian

products [27]. Since the cost of forming a join or cartesian

product of two relations is related to the product of the sizes

of these relations, it makes sense to first restrict the sizes of

each relation by performing selections and projections. Yet

after a query is transformed in this way, a naive execution

requires each subquery to be executed and each intermediate

relation to be stored. Stream processing is a technique that

seeks to avoid intermediate storage and to minimize sequential

search.

In the next section the rudiments of our technique are

explained in terms of a simple example. Section 3 presents a

precise formal description of the stream processing problem.

Sections 4 and 5 discuss the complexity of solving this

problem. Section 6 gives relevant hackround. The final

section concludes with open problems.

2. S t ream Processing Example

To illustrate stream processing applied to database queries, we

will assume a simple database modeled after the SETL

programming language [24]. Primitive data values consist of

standard boolean, numeric, and string types organized within

finite tuples, sots, and maps. Tuples are dynamic vectors, and

are ordered from the first to the last component: sets are

unordered, and cannot contain repeated elements; maps are

dynamic binary relations represented by sets of pairs [x.y]

each of which associates a domain value x with a

corresponding range value y. The elements of tuples, sets, and

maps can themselves be tuples, sets. and maps to any depth

of nesting.

The SETL-like query language incorporates conventional

dictions as are found in other programming languages, and

with a few exceptions uses universally accepted mathematical

set notations (see [11]). Table 1 below lists the main

notational features of SETL used in this paper,

53

s with: = x

s l e s s : = x

x ~ S

s U : = d e l t a

s - : = d e l t a

f (x) := y

f (x I xn)
(For x • S)

BI ock (x)
end forall
Ix • s I k (x) }
H x • s I k(x)
V x • s I k(x)
s U t
s n t
S - t

f[s]
#s
+/s
U/s
mig/s

f.g

O p e r a t i o n Remarks

add element x to set s
delete element x from set s
set membership
add set delta to set s
delete set delta from set s

modify function f at point x to
have value y
function retrleval
Execute Block(x) for every
value x • s

set former
existential quantifier
universal quantifier
set union
set intersection
set difference
image set
set or tuple cardinality
a g g r e g a t e sum over set or tuple s
aggregate union
aggregate minimum
map inverse; i.e.,{[y,x]: [x,y]ef}
map composition; i.e.,
{[x,z]: [x,y] • g, Z • f{y}}

s x t cartesian product; i.e.,
{Ix,y]: x • s, y • t}

Table I.
.

The tuple, set. and map data types together with powerful set

theoretic operations facilitate the modeling of high level

optimizations used to improve relational queries: but more

than that. we can even model the physical structure of

databases conveniently so that lower level optimizations can bc

represented abstractly. The discussion of stream processing

will benefit from this set theoretic model.

We note that database relations can be represented either as

sets of tuples, or as "entity" sets of blank atoms (i.e., Lisp

gensyms) together with maps from entity sets into primitive

values. The relational notion of attribute is captured in the

set theoretic notion of map. All of the primitive relational

operations - selection, projection, join. difference, and union

- can be represented by various forms of the set former (see

[20] for further discussion of this thought).

We assume that sets are implemented on secondary storage

using an extensible hash file organization that supports

membership tests, element additions, and element deletions in

unit time. and iteration through all set elements in time

proportional to the cardinality of the set [5]. The domains

of maps can be hashed like sets, and range elements can be

accessed rapidly using pointers.

Fagin. et. al. originally proposed that the directory portion of

their extensible hashing file structure could reside in primary

memory to improve the performance of the operations just

mentioned [5]. We note that this arrangement also makes it

possible to perform direct access to a record in the same file

that is being iterated through without any degradation in

speed. This remarkable feature of extensible hashing, which

has not been emphasized before, is exploited in our stream

processing model.

It is convenient to introduce the essential ideas behind stream

processing using a simple example. Consider how to evaluate

the query: ' f ind all employees whose salary is greater than the

average employee salary. This can be expressed

{x • emps] sal(x) > (*/[sat(y): y • emps])//temps} (1)

where crops is a set of employees, sal is a function from

employees to salaries, [sat(y): y • emps] forms a vector of

salaries for all employees. +/[sat(y): y • cmps] is the sum of

all these salaries, and #emps is the number of employees in

emps.

A standard, but naive, way of evaluating query (1) would bc

to compute its inner to outer subexpressions as in the

following 4 assignments:

cl := [sal(y): y • crops]: (2)

c2 := + /e l :
c3 := #emps:
c4 := {x • e m p s I sallx) > c2/c3}

These 4 assignments represent 4 sequential passes through

possibly large sets or tuples, and 3 intermediate stored results

before c4 is finally computed. As we will see, stream

processing will enable c4 to be computed by a straightforward

procedure using only 2 sequential passes and without having to

store the costly tuple el.

We assume that each of the subexpression calculations in the

sequence (2) is computed by a single sequential pass through a

set or tuple valued parameter, called a s t r e a m parameter. 3

Parameters that are

n o n s t r e a m parameters.

parameters for cl-c4:

c l := [] ;
(f o r x • emps)

c l w i t h : = s a l (x) ;
end;

cl := [];

not stream parameters are called

Table 2 below illustrates the stream

$initialize cl to empty tuple;
gperform a sequential search
Sthrough emps; concatenate
gthe salary of x to cl

(f o r [e , a m o u n t] e s a l)
c l with: = amoun t ;

end;

a . e m p s

c2 := O;
(for x • el)

c2 +:= x;
end ;

$search through the salary
$index; concatenate the
$salary of e to cl

and sal are 2 stream parameters f o r cl

$search the ci tuple from the ist to
$1ast component; add the component
$value x to c2

b. c l i s t h e s t r e a m p a r a m e t e r f o r c2

c3 := 0;
(for x e emps) $search through emps

c3 ÷:= i; $increment c3
end;

c. emps is a stream parameter for c3

3For sets the sequential pass is unordered; for tuples the
search proceeds from the first to last tuple componenL

54

e4 := {}:
(f o r X • emps)

i£ sal(x) > c2/c3 then Sif the salary of x is
c4 with: = x; $greater than the average

end if; $employee s a l a r y , add x to
end ; $ t h e s e t c4

c4 := { } ;
(for [e , a m o u n t] • sal)

if amount > c2/c3 then
c4 with:= e; Sadd e to the set c4

end if;
end;

d. the stream parameters for c4 are sal and emps;
c2 and c3 are nonstream parameters

Table 2.

Note that cl and c4 can be computed using either of two

alternative stream parameters.

Table 2 exhibits two kinds of loop combination techniques.

One of these techniques can be used when the value of one

expression is a stream parameter for another expression. For

example, ci is the stream parameter for c2, and so cl and c2

can be computed together in a single sequential pass through

emps; i.e.,

c2 := O: (3)

cl := []:

(for x • crops)
c2 +:= sal(x):
cl with:= sal(x):

end;

The kind of loop combination used in (3) is called vertical

loop fusion. Note that the natural data dependency of c2 on

el. which is explicit within (2), is absent in (3).

Consequently, the evaluation of ci within (3) does not

contribute to the calculation of c2 and can be eliminated.

Another loop combination technique, called horlzoma/ loop

fusion, can be used when two expressions share a common

stream parameter, as in the case of ci and c3.

c3 := O; (4)
cl := [] :
(for x • emps)

c3 +:= i:
cl with:= sal(x);

end;

Vertical and horizontal fusion can also be combined. For

example, since cl is a stream parameter of c2, and since cl is

constructed within the loop (4) (which resulted from

horizontal fusion of cl and c2), we can embellish the loop (4)

by applying vertical fusion of c2 with respect to cl within

(4). The result is shown just below:

c3 := 0: (5)

c2 := 0:
c1 := [] :
(for x • empsl

c3 +:= 1:
c2 +:= sal(x):

cl with:= sal(x);

end;

One important thing to note about the code (3), (4). and (5)

which results f rom loop fusion is that the sequence of

modifications to each of the variables cl, c2. and c3 is

identical to the corresponding sequence found in the

unoptimized code (executed with respect to one of the stream

parameters) shown in Table 2. Thus, whenever loop fusion is

applied, improvement over some standard unoptimized

implementation is guaranteed. In general, improved

performance results f rom cutting down on sequential search

and eliminating code made useless by vertical fusion.

Application of loop fusion is mitigated by correctness as well

as performance considerations. For example, it would not be

correct to apply horizontal fusion of c4 and c3 with respect

to their common stream parameter emps. If this kind of

fusion were applied, c3 would be constructed incrementally (so

that its full value would not be available) in the same loop in

which c4 is constructed incrementally. However, the code to

construct c4 incrementally with respect to emps makes

reference to the full value of c3. which is not available. (see

Table 2 (d)) For the same reason horizontal fusion cannot be

applied to c4 and el.

Code that results from loop fusion in accordance with

restrictions like those just mentioned and that evaluates several

expressions in the same loop is called a valid loop. It is

convenient to use the term 'loop' to mean 'valid loop'.

Sequences of valid loops are also restricted. For example,

since c4 depends on c3 but cannot be fused with it. the loop

used to construct c3 must precede the loop used to construct

c4. Sequences of loops that obey such restrictions are called

schedules. The four loops (2) used to construct cL c2, c3,

and c4 represent a naive schedule with no loop fusion.

Another schedule for these expressions consists of 3 loops: the

first loop results from vertical fusion of c2 and cl with

respect to sal; the next loop is formed by evaluating c3 using

the code shown in Table 2 (c); the last loop is an evaluation

of c4 by either of the alternatives given in Table 2. A

schedule for el, c2, c3. and c4 can even be made from only

2 loops - loop (5) followed by either of the loops shown in

Table 2 (d) for evaluating c4. This two-loop schedule is

optimal in the sense that there are no schedules with fewer

than 2 loops using vertical and horizontal loop fusion

transformations. The problem of stream process/rig is to

find optimal schedules.

In this paper we only consider stream processing for iterat/ve

expressions: i.e.. nonrecursively defined expressions that can

be evaluated using an unordcred sequential search with respect

to one stream parameter. Thus we do not consider evaluation

by use of merging two streams, or related techniques in which

stream values are sorted or ordered in some way.

Consequently, join operations must be performed by methods

not involving sorting (e.g.. by the ' inner-outer" method [25]).

A relational union is handled by decomposing it into two

operations (consequently, two loops), a copy and the addition

55

of one relation to another. To perform the cartesian product

of two relauons, we must choose one of the relations as the

stream parameter f rom which the outer loop is formed. For

each iteration through this loop. the cartesian product is built

up incrementally by peforming an inner loop through the

other relation.

As we will see later on. the problem of stream processing is

so hard that with these and other restrictions the problem

remains NP-Hard. Yet stream processing is a fundamental

optimization method essential to the efficient translation of

database queries and very high level languages. As a

programming language optimization, it may be viewed together

with finite differencing [21] as a transformation that gives

rise to variables and turns functional code into imperative

code. Specifically, stream processing could establish collections

of equalities indicated within functional programs: such

equalities could then be maintained in program regions where

they are needed by finite differencing. (See the Appendix

for an example of this idea.) Stream processing is also an

interesting and unusual scheduling problem involving

precedence constraints between processors (i.e., subexpressions)

and also between groups of processors (i.e., between loops).

We feel that stream processing should be investigated, and the

simple model discussed in this paper is offered as a basis that

provides enough utility to be convincing, and a sufficient

window of tractibility to invite further work with more

complicated models.

3. A Graph Theoret ic F r a m e w o r k for S t r eam Procesing

Consider the problem of computing a collection of queries.

Before stream processing can be used we must decompose all

these queries into the basic iterative expressions out of which

they are composed. 4 Suppose that there are n such iterative

expressions E1 = f l , E2 = f2.....En = fn, ordered from inner

to outer subexpression: i.e.. there are no occurrences of Ej in

the expressions fi. l<=i<=j<=n. The expressions can then be

computed naively by performing n assignments.

El := fl" E2: = f2;..En := fn,

which amounts to n loops. The stream processing problem is

to partition the computed variables E1....En into groups of

variables. The variables in each group will be constructed

within the same loop by vertical and horizontal fusion so that

an optimal schedule {with the fewest number of loops) is

obtained.

A more formal description of the problem can be stated using

a graph theoretic representation. We construcl a dependency

dag D = {V. E) with vertices V and edges E in the following

wax':

i. V = {E1.....En.vn+l.....vn+k}. where vn+l...,.vn+k are all the

variables on which the expressions f l fn depend other than

E1.....En :

ii. E = {[Ei.x]: i=l..n, x e V I x occurs within fi}:

It is also useful to define the set of stream edges: i,e..

stream_edges = { [Ei.x] • E [x is a stream parameter
of fi}

We assume that all iterative expressions have at least one

stream edge. All edges in E that are not stream edges are

called nonstream edges.

An optimal schedule can then be found by the following

steps:

i. Choose one stream out--edge [E.x] for every internal vertex

E. This indicates that E will be computed incrementally with

respect to its stream parameter x.

ii. Partition the edges chosen in step (i.) into trees with edges

directed toward the root, Each tree represents a loop

involving a sequential pass !hrough the variable associated with

the root. Within each tree the sybling vertices are

horizontally fused with respect to the parent vertex. Each

grandchild vertex in a tree is vertically fused with its parent.

iii. Within each tree selected in step (ii), all nontree edges of
E must lead to the root of the tree. Within a schedule, no

edge can lead from an internal vertex of one tree t l to an

internal vertex of another tree t2 scheduled after t l . These

rules ensure that no expression can be referenced until it has

been fully computed. In particular, the value of the

expression associated with the root of a tree t must be

computed at the point when t is scheduled.

ix,. Choose a partition in step (ii) with a minimum number

of trees and that also satisfies the conditions of {iii).

A precise abstract but computable formulation of the steps

(i}-{iv) above is expressed just below. We use the notation 3s

1o denote the value of an arbitrary element selected f rom the

set s. The expression doma in t denotes all vertices of the tree

other than the root. {Such vertices are associated with the

computable variables Ei.i=l..n.)

$find a tree partition of the stream edges
Find {tl.....m} partitionof

3{ F c stream_edges I (V x • domain stream_edges

i # F i x } = 1)} i
$ y can never be referenced before it is fully computed

(¥ 1 <= i <= j <= n [(not3 [x,y] • E - tj [
x E domain ti & y • domain tj)

minimizing n $optimality condition

Figure 1 exhibits the two cases of prohibitted edges.

4Of course, such decomposition can greatly effect the
success of stream processing. However, this topic will not be
considered in the paper.

56

a . A n o n t r e e edge b e t w e e n 2 b. An edge b e t w e e n 2
i n t e r n a l nodes o f a t r e e t r e e s t i and t j , i < j

F i g u r e 1.

Figure 2 is a graph representation of the stream processing

problem discussed in the last section.

4 ~ ~ 3 , 4) ; (1) ; (6) (1 , 2 , 4) ; (6)

a . P rob l em I n s t a n c e b. S u b o p t i m a l c . O p t i m a l
S c h e d u l e S c h e d u l e

F i g u r e 2. Broken t i n e s d e n o t e n o n s t r e a m e d g e s .

4. Complexity Resul t s

Unfortunately, the following theorem states that the stream

processing problem is intractable in general.

Theorem 1: The Stream Processing Problem (SPP) is NP hard.

proof) Consider a simple instance of the stream processing

problem, El=fl ,En=fn,vn+l. . . ,vn+k, where none of the fi 's

depend on any of the Ej's, and the dag representation only

contains stream edges. Then we only have horizontal fusion.

(See figure 3 below'.)

Figure 3.

An optimal schedule is equivalent to finding a minimal set of

input variables vn+l.....vn+k connected to all expressions

fl.fn. Bul this is a formulation of the NP-Hard Hitting

Set Problem [9]. J

Because of this negative resull it would seem to be worthwhile

to make the problem easier to solve by imposing some

additional conditions. The obvious restriction is to preselect

the stream edges so that each basic iterative expression has

only 1 stream parameter. In terms of the dag representation

this restriction makes the stream edges a forest. But

surprisingly, this restricted stream processing problem (RSPP)

is also NP-Hard.

In the following discussion it is useful to distinguish between

the decision and optimization problems for RSPP. The RSPP

Decision Problem asks whether there is a schedule of length

k or less for an arbitrary RSPP instance. The RSPP

Optimization Problem is to f ind the optimal schedule for an

arbitrary RSPP instance.

Observe that in order to produce an optimal schedule it is

only neeesary to compute an initial loop of an optimal

schedule. If D = (V,E) is the Dag representation of an RSPP

instance, let F be the initial loop of an optimal schedule, and

let D" be the subgraph of D induced by removing the edges

of F and all nonstream edges of D entering vertices of F. If

P2,....Pm is an optimal schedule for D', then F.P2....,Pm is an

optimal schedule for D. In the proof of Theorem 2 below, we

say that D' is the graph resulting from scheduling F.

Theorem 2:. The RSPP Decision problem is NP--Complete

proof) We reduce a variation of the NP--Complete problem

called CYCLEBREAK to the RSPP decision problem.

CYCLEBREAK [9] is the following problem: given a directed

graph G and a natural number k, is it possible to obtain an

aeylic graph from G by removing at most k vertices? The

variation which we consider is: are there k vertices wl, w2,

. . . . wk of G such that removal of all edges leading into

these k vertices results in an acylic graph?

Given ~ directed graph G = (V, E) with V = {vl vn}.

let f(G) be the RSPP instance with vertex set {ai. bi. el:

i=l. .n}, stream edges {[hi. ai]. [ci. bi] : i=l . .n}, and

nonstream edges {[ci. bj] : [vi. vj] in E}.

= = , uz E
vc %

a. edge [v i , v j] in E b. f ([v i , v j]) , where t h e
broken edge is nonstream

We show that a graph G can be made aeyclic by removing k

vertices iff f(G) has an RSPP schedule of n+k or fewer loops.

Observe that by the definition of a loop. the graph f(G)

restricted to a loop must be a tree. The only possible loops

are of the forms {[hi. ai]}, {[bi. ai], [ci, bi]} and {[ci,

bi]}. Loops of the form {[bi. ai]} are called type 1 loops:

loops of the other two forms are type 2 loops. Since the

vertices bi, i = 1...n have no nonstream parameters, a type 1

loop may always be placed as the initial loop of a schedule.

Let D = f(G). If D" is a subgraph of D. define C(D') to be

the graph obtained by collapsing the vertices ai. bi, and ¢i for

each i = 1...n. Thus C(f(G)) = G. If D' is the graph that

results from scheduling a type 1 loop { [hi. ai] }. then C(D')

is the graph formed from G by removing all edges entering

vi. If D' results f rom scheduling a type 2 loop containing

the edge [ci, bi]. then C(D') is identical to G except that the

vertex vi is removed. Note that such a type 2 loop can only

be scheduled for a graph D when the vertex vi in C(D) has

57

outdegree 0. Also note that any schedule for D must have

exactly n type 2 loops.

Now suppose that a graph G can be made aeyclic by

removing k vertices. We show that f(G) has an RSPP

schedule of k + n or fewer loops. Let D = f(G). There is

a set W = {wl, w2 wk} such that removal of all edges

leading into wl,w2,...,wk results in an aeyclic graph G'. Let

D" be the graph resulting f rom scheduling k type 1 loops

{[bi. ai] : vi in W}. CID') = G'. Since G' is finite and
acyelic there is a vertex vi with outdegree 0. Thus it is valid

to schedule a type 2 loop corresponding to vi, i.e. either { [bi,

ai] , [ci, bi] } or if { [bi, ai] } has been already scheduled

then { tel. bi] }. In fact it is possible to schedule all n type

2 loops, because scheduling of a type 2 loop in D'

corresponds to removing a vertex from C(D'). The resulting

graph will again have a vertex with our.degree 0, which will

allow another type 2 loop to be scheduled. This can be

repeated until all n vertices have been removed. Thus. RSPP

for the graph f(G) can be solved using k + n loops.

Conversely suppose the RSPP instance D can be solved using

k * n loops. Since any schedule can be altered by moving all

type 1 loops to the front, we assume our schedule has all of

its k type 1 loops occurring first. Let W = {vi : { [bi, ai]}

is a loop appearing in the schedule for D}. Let D" be the

graph resulting from scheduling the type 1 loops. Let G' =

C(D'). G" is the graph formed from G by removing all

edges entering W. We claim that G' is acylic. Suppose it is

not. Then it is not possible to find a sequence sl sn of

vertices such that si has outdegree 0 in the graph G" with

vertices sl si-1 removed. But that is precisely what is

required for the RSPP instance D" to be solved with n type 2

loopse

Corollary:. The RSPP Optimization Problem is NP-Hard

Despite the preceding negative result we should understand

that any feasible schedule that involves only a single instance

of fusion is better than the naive unoptimized schedule.

Thus. it is worthwhile to consider various efficient algorithms

that give suboptimal schedules, or that give optimal schedules

on significant subclasses of problem instances. In the next

section we will present two such algorithms.

5. S t r eam Processing A l go r i t hms

The first algorithm for solving RSPP sketched below is highly

efficient, but gives suboptimal performance except for only a

modest subclass of problem instances. It uses a greedy

strategy in that each tree added to the schedule contains a

maximum number of edges.

Greedy Algorithm

input: an instance of RSPP: D = (V,E), stream-edges

A. mark a l l r o o t s i n t h e f o r e s t
B. r e p e a t e d l y f i n d l o o p s u n t i l a l l v e r t i c e s a r e

ma rked :
i . p i c k a s t r e a m edge [x , r] where r i s

marked and x is not, and assign it to
tree; r will be the root of the tree

ii. until it is no longer possible,
augment tree with a stream edge [u,v]
for which,

a. v is in tree,
b. u is not in tree
c. all nonstream edges leading out

of v must l e a d into marked vertices
ili. add tree to the end of the schedule and

mark the vertices in tree

The greedy algorithm runs in O(#E) steps, and can be

modified with little effort to solve the more general problcrn

of SPP with the same tirnc complexity.

The ,greedy algorithm for solving RSPP can be made even

greedier. In step B (i.), the choice of root can be made

based on a maximal tree over all choices of possible roots.

This algorithm {called the 'greedier' algorithm) maintains a

heap of tree sizes for each potential root and runs in O(#E

log #V). It too can be adapted to SPP without changing the

asymptotic time complexity. However. as is illustrated by

Figure 4 below, the greedier algorithm can easily yield

suboptimal schedules.

21.~r~ (1 , 2 , 4) ; (3) ; (5) (1) ; (2 . 3 , 4 , 5)

a. RSPP dad b. greedier c. optimal
schedule schedule

Figure 4. Broken lines are nonstream edges

Since the greedier algorithm can only yield optimal solutions

on a modest class of problem instances, it is worthwhile

considering other algorithms designed specifically for a wide

class of instances for which optimality is achieved. If this

class is contained in the class of RSPP instances, and if the

algorithm will give reasonable suboptimal solutions on RSPP

instances ouside of this class, then 2 approaches can be taken

to solve SPP. The first approach to solve an SPP instance P

would be to choose a best solution over all possible RSPP

instances contained in P. The second approach is to solve an

RSPP instance formed heuristically f rom an SPP instance.

The first approach obviously yields better results, and may be

fairly efficient for small sized SPP instances, or for the case

when there are only a few vertices having more than 1 stream

edge leading out. Because so many of the iterative

expressions given in Table 1 are either unary or have 2 stream

parameters, we expect that this first approach will often be

reasonable.

When the first approach is too costly, it is possible to utilize

a modified version of the greedier algorithm to reduce any

58

SIP instance to a "reasonable' choice of RSPP subinstance.

This entails choosing a subset of the stream edges that forms

a forest (i.e., a valid ILSPP subinstance) with a minimal

number of trees. All of the stream edges outside of this

forest are considered nonstream edges.

The next algorithm will produce optimal results for a subclass

of RSPP instances. The basis of our algorithm is the

observation that a certain kind of cyclical structure in the dag

is the basis for the NP completeness resulL If this structure

is not present an optimal solution can be found efficiently.

The following definit ions facilitate the explanation of the

algorithm.

Defini t ion 1: A /orward edge in an RSPP instance is a

nonstream edge [x,y] for which there is a path f rom x to y

consisting only of stream edges, All other nonstream edges

are called cross edges.

Definition 2: The head vertices in an RSPP instance are the

dag roots (vertices with 0 outdegree but that have at least one

entering stream edge) and the heads of forward edges.

Def ini t ion 3: We define a partial ordering on the head

vertices in the following way. If x and y are 2 head vertices.

then x < y if there exists a path from x to y consisting only

of stream edges.

Def in i t ion 4: x is a minimal head if there is no head y for

which y < x.

Def ini t ion 5: A minimal tree is a tree that has a minimal

head as the root and a maximal number of stream edges.

Forward-edge Algorithm

input: an instance of RSPP. D = (E.V), stream-edges, heads;

Repeat the following steps until no stream edges are left in

the dag.

A. If there exists a minimal tree (representing a loop) with no

cross edges leading into any of its internal vertices, place it at

the beginning of the schedule. Otherwise execute a variant of

the greedy algorithm that chooses a tree t starting from the

leaves (instead of f rom a root) of any minimal tree. Place t

at the beginning of the schedule.

B. Remove the tree chosen in step A and all edges leading

out of it f rom the dag. Also, delete f rom heads the head of

the tree just removed and all heads in the remaining dag with

no forward edges leading into them.

Theorem 3: When the greedy algorithm is never executed in

step A, the Forward Edge Algorithm yields an optimal

solution.

proof) The proof is by induction on the size of an optimal
schedule. Let S = [T1,...,Tk] be an optimal schedule of k

loops T1.....Tk. If k=l, then the Dag representation of the

RSPP instance must have only one head vertex. Hence, the

forward edge algorithm will execute step A only once and

form the optimal schedule from a single minimal tree.

Assume that the forward edge algorithm will find optimal

schedules of size less than or equal to k. and consider an

RSPP instance with an optimal schedule of size k+l. Let T

be the first minimal tree detected in step A of the forward

edge algorithm. Let Tj be the last tree in the schedule S that

contains common edges with T. Since any nonstream edge

contained in T must lead from an internal vertex of T to the

root of T, and since there arc no stream edges in the dag

representation of the RSPP instance leading into T, we know

that Tj must be a subtree of T. We can then form a new

optimal schedule S" from S by replacing Tk with T and

removing from all other components of S all those edges

belonging to T but not Tk •

The forward--e, dge algorthm can be tailored to run in O(#E)

steps. It can also be modified to construct parallel schedules.

Parallel schedules are sequences of stages in which each stage

contains a set of loops that can be executed in parallel, and

all the loops at one stage must be executed before any of the

loops at the next stage. A parallel schedule can be

constructed by changing Step A so that the set of all minimal

trees (with no cross edges leading in) are determined. This

set would be a stage placed at the beginning of the schedule.

6. His tory

The idea of stream processing traces back to loop fusion, a

program transformation described by Allen and Cocke [1] for

merging two separate Fortran do loops into a single loop.

Figure 5 illustrates the technique on code that computes the

sum of the vector dot products a.b + c.d.

do 1 i -- 1,n
suml = sum1 + a(i)*b(i))

i continue

do 2 j = 1.n

sum2 = sum2 + c(j)*d(j)
2 continue

sum = suml + sum2

do 2 i = 1,n

sum1 = sum1 + a(i)*b(i))

j=i

sum2 = sum2 + c(j)*d(j)
2 continue

sum = suml + sum2

Figure 5. Fortran Loop Fusion

Recently, Fortran loop optimizations by fusion and more

complicated loop rearangements have been developed in depth

by Allen [2].

Burstall and Darlington discuss both horizontal and vertical

loop fusion of recursive equations within the context of their

Lisp transformational programming system [4]. Figure 6

illustrates the dot product example of Figure 5 in in this new

context.

59

dot(x,y.nl = if n=O then
0

else
dotix,y,n-1) + x(n)*y(n)

end if

(a) Dot product definition

f(a.b.c,d.nl = dot(a.b.n) * dot(c.d.n) ==>

f(a.b.c.d.n) -- if n=O then
0

else
f(a.b.c.d.n-ll + a(n)*b(n)

+ e(n)*d(n)
end if

(b) Horizontal Loop Fusion
Figure 6.

Burge later reformulated the techniques of Burstall and

Darlington. and he presented examples of loop fusion of

recursively defined Lisp procedures [3]. Friedman and Wise

investigated more complicated examples of streaming and

proposed a new implementation technique called suspended

evaluation [7]. They also applied their technique to file

systems [8]. Some of these ideas are surveyexl in [12].

Using a Lisp program development system based on

Dartington's earlier transformational system. Feather [6]

demonstrated the importance of fusion technique to the

construction of moderate sized software systems. While

Burstall and Darlington illustrated fusion for simple

expressions, Feather generalized the technique effectively to

interface more complicated procedures. Guibas and Wyatt

illustrated fusion techniques to improve APL code, and they

presented a simple algorithm that could apply fusion

automatically within an optimizing compiler [10]. More

recently, Reif and Scherlis stressed the importance of loop

fusion in the derivation of complicated graph algorithms using

a depth first search strategy [23].

While the preceding references discuss loop fusion
transformations implemented manually or by highly specialized

algorithms, Morgenstern explored automatic loop fusion

transformations in depth, within the context of file processing

systems [16]. Morgenstern used a dynamic programming

algorithm to implement his transformations, but no analytic

investigation of performance was made. However. his

empirical studies showed that his algorithm was too slow to

handle more than toy problems.

Housel [13] later considered a batch oriented data

restructuring application, which was similar to Morgenstern's

work, but involved a simpler model and a more naive

scheduling algorithm. In particular, Housel only considered a

limited number of primitives that included sorting and

operations constrained to perform sequential processing on all

of its arguments, the kind of model that would be useful for

tape resident files.

Various algorithmic improvements m data restructuring have

emerged recently from the Model programming language

project [15, 22]. A nonalgorithmic approach in which loop

definitions and scheduling are all specified within declarations

has been propesed by Waters [28]. Overmars has applied

stream processing to improve the space bounds on data

structures used for solving hatched search problems [17].

Based on the general transformational technique of finite

differencing. Paige discovered a useful framework for

implementing vertical and horizontal expression fusion

efficiently [18. 21] - however, the scheduling algorithms

presented there yielded solutions much worse than those

presented in our paper. Weixalbaum later found a notation

based on the integral calculus for describing Paiga's ideas, and

his unpublished manuscript refers to the fusion

transformations expressed in his operator language as 'formal

integration" [29]. Sharir later published similar results along

with some examples [26]. Like earlier research in loop

fusion. Weixalbaum and Sharir describe fusion informally and

provide no implementation algorithms.

7. Conclusion

We have presented a new graph theoretic model for stream

processing of iterative expressions. Within this model,

optimality is investigated with respect to the number of fused

loops. Although solving this problem is shown to be

theoretically hard, several new efficient algorithms are

presented. The greedier algorithm yields suboptimal solutions

on all but a modest subclass of problem instances, while the

forward-edge algorithm gives optimal solutions on a wide class

of problem instances. Our initial case studies of stream
processing applied to database and program optimization

strongly suggest the importance of this transformation, and

should encourage further investigations to explore optimal

schedules with respect to other criteria; e,g., space utilization

(regarding total space required after dead code elimination),

access costs, criteria with respect to models involving merging

and sort orders, parallel models, etc.

Appendix. Stream Processing Applied to a Useless Code
Elimination Procedure

In [19]. a derivation is presented of an efficient useless code

elimination procedure (based on [14]) from the abstract
formulation just below:

crit := prints:
(converge) $Repeat until crit no longer changes.

crit o:= instof [usetodef [iuses [crit]]] u
compound [crit] :

end:

where the variables are defined as follows:

prints: set of print statements
iuses: maps each statement to the variable uses

it contains
usetodef: maps each variable use to the variable

definitions that can reach it
instof: maps each variable occurrence to the

statement immediately containing it
compound: maps each statement to the compound

statement immediately containing it

60

The derivation reqmres collecUve initializauon and differentml

maintenance of the following 14 invanants,

u s e s = iuses [crit]
d e f s = u s e t o d e f [u s e s]
insts = instof [defs]
comps = compound [crit]
instpnts = insts u comps
newinsts = { x • instpnts I x e crit }
compstream = {[y,x]: x • crlt, y e compound { }} x
ncompstream = { [x , # compstream{ x }] : x • domain

compstream}
u s e p s t r e a m = {[y,x]: x • crit iuses
nusepst ,ea . = tx,# usepstrea= : }] x domain

usepstream}
defpstream ~ {[y,x]: x • uses, y • usetodef { x 3}
ndefpstream = {[x , # d e f p s t r e a m { x 3] : x • domain

d e f p s t r e a m 3
i n s t p s t r e a m ffi { [y , x] : x • d e f s , y • i n s t o f { x } }
n l n s t p s t r e a m = { [x , # i n s t p s t r e a m { x 3] : x • domain

i n s t p s t r e a m }

whose dependency graph (with stream parameters drawn as

single edges) appears below:

b r o k e n l i n e s a r e n o n s t r e a m e d g e s

Application of the Greedier or the Forward--edge algorithms

will collapse those 14 im~ie i t loops into a single loop shown

below:

newinsts := { } ;
instpnts := { } ;
insts := { } ;
nlnstpstream := { } ;
instpstream := { } ;
d e f s := { } ;
n d e f p s t r e a m := { } ;
d e f p s t r e a m := { } ;
u s e s : = { } ;
n u s e p s t r e a m := { } ;
u s e p s t r e a m := { } ;
comps := { } ;
n c o m p s t r e a m := { } ;
c o m p s t r e a m := { } ;
(forall x4 • crit)

(forall x3 • iuses { x4 } |
nusepstream (x3) = 0

(f o r a l l x16 • u s e t o d e f { x3 } t
n d e f p s t r e a m (x16) = 0)

(f o r a l l x21 • i n s t o f { x16 } 1
n i n s t p s t r e a m (x21) = 0)

i f x21 e c r i t t h e n
newinsts with := x21 ;

end if ;
i n s t p n t s w i t h := x21 ;
insts with := x21 ;

end forall ;

f o r a l l x29 e i n s t o f { x16 })
n i n s t p s t r e a m (x 2 9) + := 1 ;
i n s t p s t r e a m { x29 } w i t h := x16 ;

end £ o r a l l ;
defs with := x16 ;

end f o r a l l ;
(£ o r a l l x 2 6 e u s e t o d e f { x 3 })

n d e f p s t r e a m (x26) + := I ;
d e f p s t r e a m { x26 } w i t h := x3 ;

end f e r a l 1 ;
u s e s w i t h := x3 ;

end £ o r a l l ;
(£ o r a l l x38 • i u s e s { x4 })

n u s e p s t r e a m (x38) + : = 1 ;
u s e p s t r e a m { x38 } w i t h := x4 ;

end f o r a l l ;
(£ o r a l l x8 e compound { x4 }]

n c o m p s t r e a m (x8) = 0)
i f x8 ~ i n s t s t h e n

i£ x8 ~ c r i t t h e n
n e w l n s t s with := x8 ;

end i f ;
£ n s t p n t s w i t h := x8 ;

end i f ;
comps w i t h := x8 ;

end f e r a l 1 ;
(f e r a l 1 x 1 3 • compound { x 4 })

n c o m p s t r e a m (x13) + := 1 ;
c o m p s t r e a m { x13 } w i t h := x4 ;

end f o r a l l ;
end f o r a l l ;

Acknowledgernent~

We are grateful to Martin Dowd and Ernst Mayr for

important insights thal contributed to our understanding of

the complexity of stream processing. We are also grateful to

Ron Pagin for pointing out that extensible hashing could

provide a convenient physical structure for a set theoretic data

model.

References

1. Allen. F. E., Cocke, John. A Catalogue of Optimizing
Transformations. In Design and Optimization of
Compilers, Randal l Rustin, Ed. .Prent ice Hal l . 1971, pp. 1-30.

2. Al len. J. R. Dependence Analysis for Subscripted
Variables and its Application to Program Transformations.
Ph.D. Th.. Rice University. 1983.

3. Burge, William. An Optimizing Technique for High Level
Programming Languages. Teeh. Rept. Computer Science
RC5834 #25271. IBM Research Center /Yorktown Heights,
1976.

4. Burstall. R. M., and Darlington. J . . "A Transformation
System for Developing Reeursive Programs ." dACM 24, 1
(Jan 1977).

5. Fagin, R., Nievergelt. J., Pippengcr. N. and Strong, J.
"Extendible Hashing - A Fast Access Method for Dynamic
Files." ACM TODS 4. 3 {Sep 1979), 315-344.

6~ Feather, Martin S. A System for Developing Programs
by Transformation. Ph.D. Th., U. o f Ed inburgh, Dept . o f
Artificial Intelligence, 1979.

7. Friedman, D., Wise, D. CONS should not evaluate its
arguments. In Automata, Languages, and Programming.
S. Michaelson and R. Milner, Ed..Edinburgh Univ. Press,
Edinburgh, 1976. pp. 257-284.

8. Friedman, D. and Wise, D. Aspects of Applicative
Programming for File Systems. Prec. ACM Conf. on
Language Design for Reliable Software. March, 1977, pp.
41-55. StGPLAN Notices. Vol 12. Num. 3

61

9. Garey, Michael 1L, Johnson, David S.. Computers and
Imractability. Freeman. 1979.

10. Guibas, L. and Wyatt. K. Compilation and delayed
evaluation in APL. Proceedings 5th ACM Symposium oL
Principles of Programming Languages, Jan, 1978, pp. 1-8.

11, Halmos, P.IL. Naive Set Theory. Nan Nostrand, 1960.

12. Henderson, P.. Functional Programming. Prentice-Hall,
1980.

13. Housel, B. "Pipelining: A Technique for Implementing
Data Restructurers." TODS 4, 4 (Dec 1979), 470-492.

14, Kennedy, K. A Survey of Compiler Optimization
Techniques. In Program Flow Analysis. Muchnick, S. and
Jones, N., Eds., Prentice Hall. 1981, pp. 5-54.

15. Lu, Kang-Sen. Program Optimization Based on a
Non-procedural Specification. Ph.D. Th., U. Penn., Dee
1981.

16. Morgenstern. Matthew. Automated Design and
Optimization of Management Information System Software.
Ph,D. Th.. MIT. Laboratory for Computer Science, Sep 1976.

17. Overmars, M.. The Design of Dynamic Data
Structures. Springer-Verlag. Berlin. 1983. Lecture Notes in
Computer Science #156

18. Paige. R.. Formal Differentiation. UMI Research Press.
Ann Arbor. Mich, 1981. Revision of Ph.D. thesis. NYU, June
1979

19, Paige. R. Transformational Programming - - Applications
to Algorithms and Systems. Proceedings Tenth ACM
Symposium on Principles of Programming Languages,
Jan, 1983, pp. 73-87.

20. Paige, Robert. Applications of Finite Differencing to
Database Integrity Control and Query/Transaction
Optimization. In Advances In Database Theory, Volume 2.
Gallaire, H.. Minker, J., and Nicolas. J.-M.. Ed..Plenum Press,
New York, 1984, pp. 171-210.

21. Paige, R.. and Koenig. S. "Finite Differencing of
Computable Expressions." ACM TOPLAS 4, 3 (July 1982).
402-454.

22, Prywes. N.. Pnueli. A., and Shastry. S. "Use of a Non-
Procedural Specification Language and Associated Program
Generator in Software Development." ACM TOPLAS 1, 2
(Oct 1979). 196-217.

23, Rail, J. and Scherlis, W. Deriving Efficient Graph
Algorithms. Carnegie-Mellon U., 1982. Technical Report

24. Schwartz, J. T.. On Programming: An In ter im Report
on the SETL Project, Installments I and I1. CIMS. New
York Univ., New York. 1974.

25. Selinger, P.G.,et.al. Access path selection in a relational
database management system. SIGMOD, Boston, May, 1979.
pp. 23-34.

26. Sharir, M. "Formal Integration - A Program
Transformation Technique." Compout. Lang. 6, 1 (1982),
35-46.

27. Ullman, J.D.. Principles of Database Systems.
Computer Science Press, 1980.

28. Waters, R. Expressional Loops. Proceedings l l th ACM
Symposium on Principles of Programming Languages,
Jan. 1984.

29. Weixalhaum, E. Formal Integration. unpublished
manuscript

1This work describes research done in part at Kestrel
Institute and is supported in part by the Defense Advanced
Research Projects Agency Contract N00014-81--C-0582,
monitored by the Office of Naval Research. The views and
conclusions contained in this paper are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied of KESTREL, DARPA or
the US Government.

2This material is based in part upon work supported by the
Defense Advanced Research Projects Agency, under the KBMS
project. Contract Number N00039-82--C-0250, and by the
National Science Foundation under Grant No. MCS-8212936.
Part of this work was done while the author was visiting
Stanford University.

62

